
P R E S E N T E R

Koney · Cyber Deception
Policies for Kubernetes

The Honeynet Project Workshop 2025

June 2, 2025 · Prague, Czech Republic

Mario Kahlhofer

Dynatrace Research

Matteo Golinelli

University of Trento

C O - D E V E L O P E R

2

APPLICATION LAYER CYBER DECEPTION

Let’s Embed Traps Directly Into Applications!

[1] Mandiant, “APT1: Exposing One of China’s Cyber Espionage Units,” 2013. [Online].

[1]

‘Classic’ honeypots are
isolated fake applications,
reachable over the network

Honeytokens & application
layer deception techniques
are traps embedded into
applications & systems

Let’s place some
fake bikes then

Thieves shall not
steal your bike

Talk Focus

• Place Honeytokens in (container) filesystems

• Add new HTTP endpoints to mislead hackers

• Modify HTTP headers, e.g., version numbers

• Modify HTTP bodies, e.g., hidden form fields

• Other (non-HTTP) methods

3

APPLICATION LAYER CYBER DECEPTION

Let’s Embed Traps Directly Into Applications! (cont.)

But software applications are
rarely deployed by the team that

wrote the code, and often the
responsibility for security

measures lies entirely elsewhere.

[2] M. Kahlhofer, M. Golinelli, and S. Rass, “Koney: A Cyber Deception Orchestration Framework
for Kubernetes,” 2025, arXiv: arXiv:2504.02431. doi: 10.48550/arXiv.2504.02431.

[2]

… instead of manually deciphering cyber deception techniques from academic papers.

4

THE IDEA

Automated Deployment of Cyber Deception “As Code”

5

THE IDEA

Cyber Deception Policy Documents

Trap-specific parameterization

Criteria for selecting the workloads
(e.g., containers) in which to deploy the traps

Decoy. [3] Strategy to deploy the trap itself

Captor. [3] Strategy for monitoring the trap

[3] W. Fan, Z. Du, D. Fernández, and V. A. Villagrá, “Enabling an Anatomic View to Investigate Honeypot
Systems: A Survey,” IEEE Sys. J., vol. 12, no. 4, pp. 3906–3919, Dec. 2018, doi: 10.1109/jsyst.2017.2762161.

LIVE DEMO

Applying a DeceptionPolicy With Koney

6

7

DECOY STRATEGY

Placing Honeytokens by Executing Shell Commands

8

DECOY STRATEGY · SUMMARY

Placing Honeytokens by Executing Shell Commands (cont.)

cat "secret" > /run/secrets/token

echo /run/secrets/token

rm /run/secrets/token

?

✓ DeceptionPolicy

✓ yes

✓ just a few process executions

Deployment

Verification

Clean-Up

Monitoring
of access attempts

Transparency
for system operators

Zero Downtime
of application services

Non-interference
with genuine operation

LIVE DEMO

Honeytoken File Access Monitoring

9

10

LIVE DEMO

Koney Alert Example

11

CAPTOR STRATEGY

File Access Monitoring with eBPF

eBPF makes the kernel programmable. eBPF programs are typically

written in a subset of C or Rust and compiled to an object file.

[4] L. Rice, What Is eBPF? Sebastopol, CA: O’Reilly Media, Inc., 2022. Accessed: Sep. 16, 2022. Available: https://isovalent.com/books/ebpf/

[4]

12

CAPTOR STRATEGY

File Access Monitoring with eBPF (cont.)

We hook the security_file_permissions kprobe in kernel space.

13

CAPTOR STRATEGY

File Access Monitoring with eBPF (cont.)

Tetragon is a Kubernetes Operator

that simplifies the creation of

“tracing policies” in K8s clusters.

Falco and Tracee are popular alternatives.

[5] K. Kourtis and A. Papagiannis, “File Monitoring with eBPF and Tetragon (Part 1),” Isovalent Blog. Accessed:
Feb. 2025. [Online]. Available: https://isovalent.com/blog/post/file-monitoring-with-ebpf-and-tetragon-part-1/

[5]

LIVE DEMO

Applying a DeceptionPolicy With Koney
to a Distroless Container Image

14

15

DECOY STRATEGY

Placing Honeytokens by Mounting Volumes

16

DECOY STRATEGY · SUMMARY

Placing Honeytokens With Koney

Strategy 1: Shell Commands

cat "secret" > /run/secrets/token

echo /run/secrets/token

rm /run/secrets/token

✓ eBPF (via Tetragon)

✓ DeceptionPolicy

✓ yes

✓ just a few process executions

Strategy 2: Volume Mounts

+spec.containers.volumeMounts

echo /run/secrets/token

-spec.containers.volumeMounts

✓ eBPF (via Tetragon)

✓ even better, visible manifest change

✗ needs container restart in Kubernetes

✓ even better, no process executions

Deployment

Verification

Clean-Up

Monitoring
of access attempts

Transparency
for system operators

Zero Downtime
of application services

Non-interference
with genuine operation

We expect to speed up the cycle time between cyber deception design and deployment,

and to help separate the responsibilities of deception technology authors,

software application developers, and system operators.

17

OUTLOOK

Deceive. Test. Repeat.

github.com/dynatrace-oss/koney

Development Outlook

• Traps for HTTP-based applications

• eBPF Monitoring without Tetragon

• LLM-generated policy documents

	Presentation
	Slide 1: Koney · Cyber Deception Policies for Kubernetes
	Slide 2: APPLICATION LAYER CYBER DECEPTION Let’s Embed Traps Directly Into Applications!
	Slide 3: APPLICATION LAYER CYBER DECEPTION Let’s Embed Traps Directly Into Applications! (cont.)
	Slide 4: THE IDEA Automated Deployment of Cyber Deception “As Code”
	Slide 5: THE IDEA Cyber Deception Policy Documents
	Slide 6: LIVE DEMO Applying a DeceptionPolicy With Koney
	Slide 7: DECOY STRATEGY Placing Honeytokens by Executing Shell Commands
	Slide 8: DECOY STRATEGY · SUMMARY Placing Honeytokens by Executing Shell Commands (cont.)
	Slide 9: LIVE DEMO Honeytoken File Access Monitoring
	Slide 10: LIVE DEMO Koney Alert Example
	Slide 11: CAPTOR STRATEGY File Access Monitoring with eBPF
	Slide 12: CAPTOR STRATEGY File Access Monitoring with eBPF (cont.)
	Slide 13: CAPTOR STRATEGY File Access Monitoring with eBPF (cont.)
	Slide 14: LIVE DEMO Applying a DeceptionPolicy With Koney to a Distroless Container Image
	Slide 15: DECOY STRATEGY Placing Honeytokens by Mounting Volumes
	Slide 16: DECOY STRATEGY · SUMMARY Placing Honeytokens With Koney
	Slide 17: OUTLOOK Deceive. Test. Repeat.
	Slide 18

