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Sometime in 2023...

Great! Read
about it and we
will figure out
the exact topic.

A FEW DAYS
LATER...
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And thus shellLM was boxn! (

|
/



DEMO


https://docs.google.com/file/d/1QtcRqtWpteJCpLkMBGtHG5vnVtEzEfR0/preview
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shellLM

e The first version had a huge system prompt

LLMs have potential but fine
tuning 1is necessary!

o System prompt down to ~400 tokens

Want to try it? You can play at: /l
ssh-p 1337 tomas@147.32.80.38

Password:

tomy 5



What’'s next? What is VellLMes?

e Can we do more than just Linux shell simulation?
e What about other protocols like MySQL, POP3, HTTP etc.

e Can all of that be combined in a Deception framework?

And thus VelLMes was born!

(From Slavic deity Veles and LLMs; read as Vel-L-M-es)
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DEMO TIME! (
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How to Evaluate Deception? (
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Unit Tests foxr LLMs

Cloud LLN

Local LLN

Cloud LLMs

Local LLMs
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Fine-tuned the best!
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Human Evaluations
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First Human Evaluation

Real Ubuntu, Cowrie and shelLM

o
B 5. Definitely a honeypot [l 4. Probahly a honeypot 3.lam not sure
R 2. Probahly areal system [ 1. Definitely a real sytem
o
al 100%
75%
50%
25%
0%

Real Ubuntu Cowrie shelLM
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Second Human Evaluation

e 89 participants

e Randomly assigned with equal probability %> to Real
Ubuntifdnedy majesty the BIAS

e 30% said shellM is a Real System

e 34% said Ubuntu is a Real System

e This brings us to.. /l
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Biases in Human Evaluation

e In the first experiment participants did not know it was about
honeypots

e In the second experiment they knew they might interact with a
honeypot

e Results are quite similar

e Does just mentioning a word honeypot, even at the end, introduce

bias?
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To Sum Up

e The LLMs have potential
e LLM honeypot is safer
e Almost no manual content generation

e But they still need to be improved

+—Stnotdeeeptive-enough; How to measure this exactly?
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Thank you!

Want to try shelLM? You can play at:
ssh-p 1337 tomas@147.32.80.38
Password:

tomy
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https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:sladimur@fel.cvut.cz

