

STRATOSPHERE LABORATORY

VelLMes: How Generative Al Can Help Cyber Deception and Defense?

Muris Sladić

Honeynet Project Annual Workshop Prague, June, 2025

Act as a Honeytoken Generator! An Investigation into Honeytoken Generation with Large Language Models Authors: Daniel Ref. Norman Becker, Tillmann Angell, Anasuya Chattopadhyay, Daniel Schneider, Sebastian Vollmer, Hans D. Schotten Authors Info & Claims

University of Science and

Technology of China

Hefei, Anhui

yym672@mail.ustc.edu.cn

Science Center

School of Information Science

and Technology.

University of Science and

Technology of China

Hefei, Anhui

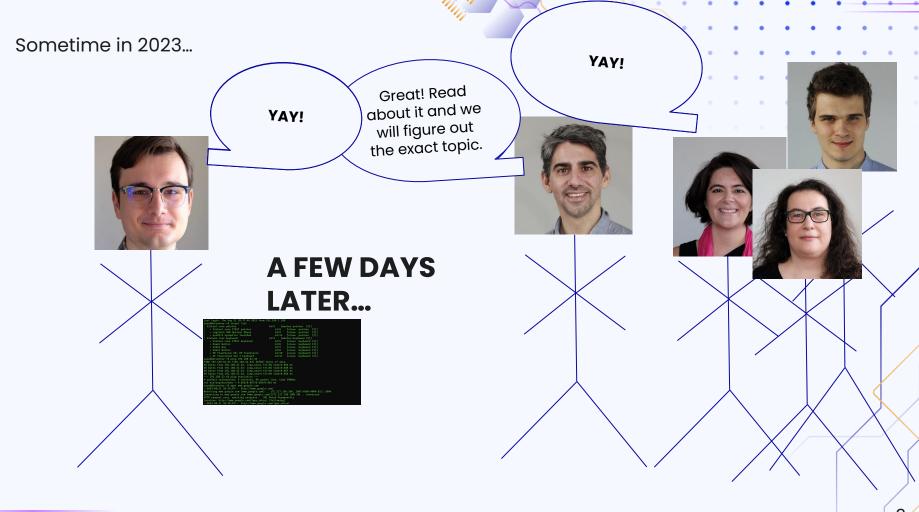
chensw@ustc.edu.cn

University of Science and

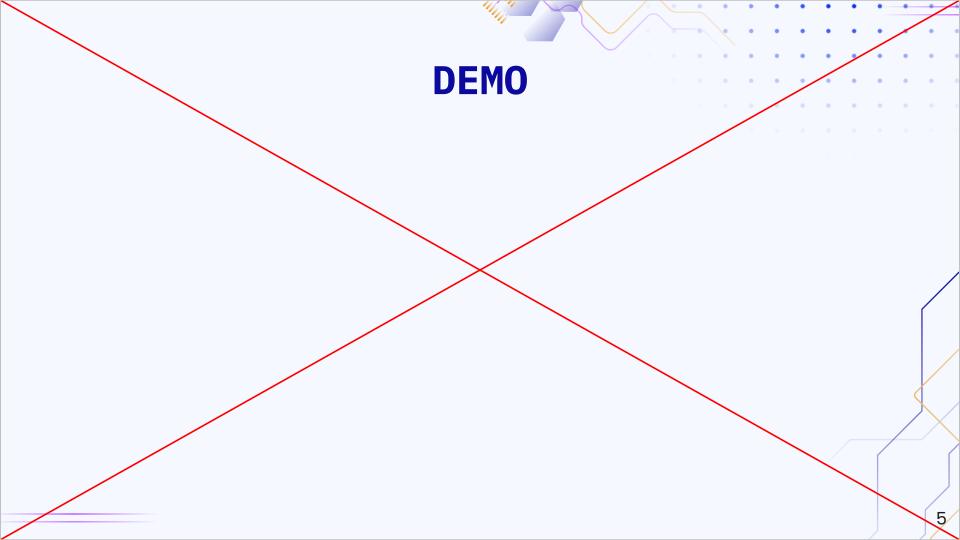
Technology of China Institute of Artificial intelligence.

Hefei Comprehensive National

Science Center Hefei, Anhui


syccc@mail.ustc.edu.cn

University of Science and


Technology of China

Hefei, Anhui

huyuqiokok@mail.ustc.edu.cn

And thus shellM was born!

shelLM

• The first version had a huge system prompt

LLMs have potential but fine tuning is necessary!

• System prompt down to ~400 tokens

Want to try it? You can play at: ssh -p 1337 tomas@147.32.80.38 Password: tomv

What's next? What is VelLMes?

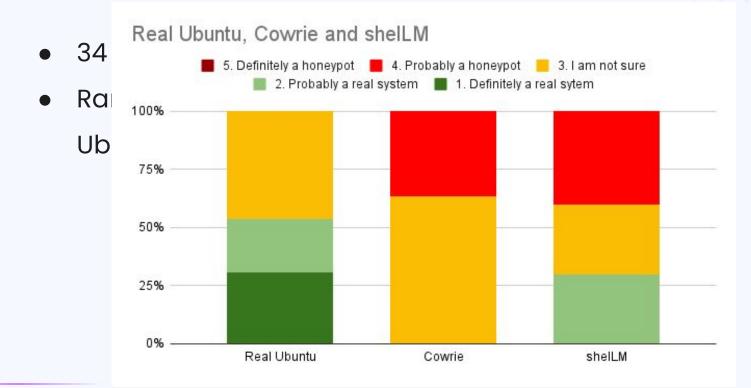
- Can we do more than just Linux shell simulation?
- What about other protocols like MySQL, POP3, HTTP etc.
- Can all of that be combined in a Deception framework?

And thus VelLMes was born!

(From Slavic deity Veles and LLMs; read as Vel-L-M-es)

DEMO TIME!

How to Evaluate Deception?


Unit Tests for LLMs

		Experiment ID	GPT	Prompt size	Session type	Passing/Total	T1	T2	T3	T4 1	T5 T	6 T7	T8	T9	T10	T11	T12							
		1	Base	Large	Whole	7/12 (58%)	\sim	\checkmark	\checkmark		×>	< X	×	×	\checkmark	\checkmark	<							
		2	Base	Large	Split	7/12 (58%)	\sim	\checkmark	\checkmark	$\mathbf{\mathbf{v}}$	×>	(X	X	×	\checkmark	\checkmark	<							
		3	Base	Small	Whole	4/12 (33%)	×	×	\checkmark	\checkmark	V >	< X	X	×	~	×	X							
•		4	Base	Small	Split	5/12 (42%)	\sim	\checkmark	\checkmark	$\mathbf{\mathbf{v}}$	×>	< X	X	×	×	\checkmark	×	7						
		5	FFT	Large	Whole	10/12 (83%)	~	\checkmark	\checkmark	\checkmark	<u> </u>	X	\sim	×	\checkmark	\checkmark	<							
Cioud LLN	Cloud LLMs	6	FFT	Large	Split	10/12 (83%)	\checkmark	~	\checkmark	\checkmark	~ •	< <	~	X	~	×	<	Fine-tuned						
		7	FFT	But	Whole	11/12 (92%)	\sim	\checkmark	\checkmark	\checkmark	 	< <	\sim	X	\checkmark	\checkmark	X	(90% tests)	i T	6 T7	7 T8	T9	T10	
		8	FFT	Small	Split	12/12 (100%)	\sim	~	\checkmark	\checkmark	<u>~</u> •	<hr/>	\checkmark	\checkmark	\checkmark	\checkmark	$\boldsymbol{<}$		1 6					
		9	gpt-4	Are LLI	Moleon	evpot	S	de	e C	e	pt	1V	e	<u>P</u>	\checkmark	\checkmark	$\mathbf{<}$		1	9				
		10	gpt-4	Large	Split	10/12 (83%)	\sim	\checkmark	\checkmark		× 🛯	 	\checkmark	\checkmark	\checkmark	×	$\mathbf{<}$	GPT-4		2 X	(X	X	\checkmark	
		11	gpt-4	Well fo	orthat		Ðe)		\checkmark	~	< <	\checkmark	\checkmark	\checkmark	\checkmark	$\boldsymbol{<}$	(83% tests)	1)	K 🛛			\sim	
	Local LLMs <	12	gpt-4	Small	Split	6/12 (50%)	\checkmark	\checkmark	\checkmark	$\mathbf{\nabla}$	×>	< X	X	X	\checkmark	X	\checkmark		T	C T	7 70	Т9	T40	1
		13	llama2-7b	Large	Whole	1/12 (8%)*	×	×	×	X	×>	< X	X	X	×	×	2			0 17				
		14	llama2-7b	Large	Split	1/12 (8%)*	3	×	X	X	×>	< X	X	X	×	×	X						×	
		15	llama2-7b	Small	Whole	1/12 (8%)*	×	×	X	X	×>	< X	X	X	×	×	M		1 3					
		16	llama2-7b	Small	Split	1/12 (8%)*	2	×	×	X	×>	< X	X	X	×	×	×		15		×		x	
		17	mistral	Large	Whole	1/12 (8%)*	×	×	×	X	×>	< X	X	X	×	×	M			and the second		51 P	J	1
		18	mistral	Large	Split	3/12 (25%)*	3	×	×	X	~ ~	۱×	X	×	×	×	×		i T	6 T7	7 T8	T9	T10	
		19	mistral	Small	Whole	2/12 (17%)*	2	×	X	X	×>	< X	X	X	×	×	2		1 >	K X	(X		\sim	
		20	mistral	Small	Split	4/12 (33%)*	×	3	X	~	×>	(1	X	X	3	×	×				2 ×		\sim	
		21	zephyr	Large	Whole	0/12 (0%)*	×	X	X	X	×>	< X	X	×	×	×	X			XX	(X		\sim	ſ
			zephyr	Large	Split	1/12 (8%)*		×	×	X	×>	< X	X	X	×	X	×				(X	\sim	X	1
			zephyr	Small	Whole	0/12 (0%)*		×	×	X	×>	(X	×	X	×	X	×							
		24	zephyr	Small	Split	2/12 (17%)*	X	X	X	2	~ >	(X	X	X	X	X	X						/	
								-															11	\cap

Fine-tuned the best!

Human Evaluations

First Human Evaluation

Second Human Evaluation

- 89 participants
- Randomly assigned with equal probability ½ to Real
 Ubuntu The bill majesty the BIAS
- 30% said shelLM is a Real System
- 34% said Ubuntu is a Real System
- This brings us to...

Biases in Human Evaluation

- In the first experiment participants did not know it was about honeypots
- In the second experiment they knew they might interact with a honeypot
- Results are quite similar
- Does just mentioning a word honeypot, even at the end, introduce bias?

To Sum Up

- The LLMs have potential
- LLM honeypot is safer
- Almost no manual content generation
- But they still need to be improved
- Still not deceptive enough; How to measure this exactly?

Muris Sladić <u>sladimur@fel.cvut.cz</u>

www.stratosphereips.org

Thank you!

Want to try shelLM? You can play at: ssh -p 1337 tomas@147.32.80.38 Password: tomy